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Abstract

Climate and nature risks are distinct but interrelated. Exposure to physical risk
from climate change or loss of ecosystem services arises from a company’s dependency
on climate and nature, while exposure to transition risk depends on the impact of a
company on climate or nature. We consider four categories of risk—nature dependence,
climate dependence, nature impact, and climate impact—and study whether financial
markets price them. To frame our analysis, we develop a theoretical model that distin-
guishes dependence and impact channels. Our model guides an empirical analysis that
compares sensitivities of stock returns to news about biodiversity and climate, which
we call nature and climate beta, with company-level characteristics from S&P Global.
Our model predicts that with better information, firms’ nature and climate betas should
more accurately reflect their fundamental risk exposures. We examine whether, after
the 2015 structural shift in information availability and investor attention, changes in
these betas correlate with firm-level environmental risk characteristics. We find that
climate betas increasingly reflect corporate climate impact, with higher-impact firms
showing greater sensitivity. Furthermore, climate betas became more aligned with
firms’ nature dependence. However, nature betas for companies more dependent on
nature decrease relative to less dependent companies, suggesting inconsistencies in the
financial market’s perception and pricing of nature-specific news and risks.
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“Our economies and political systems
are unconsciously predicated on the
belief that nature will continue to be a
benign and regular provider of the
conditions we need to thrive.”

— Sir David Attenborough

1 Introduction

It is well known that economies are threatened by climate change and that negative feedback

effects exist between climate change, economic activities, and the financial flows that enable

them. However, while the financial implications of climate change are increasingly studied,

much less is understood about the economic impact and market pricing of other critical

nature-related threats such as water stress, pollution, deforestation, biodiversity loss, and

soil degradation. This gap persists despite growing awareness, leaving the extent to which

financial markets distinctly price these complex nature-related risks as a significant open

question. While there are some early findings on the negative impact of economic activities

on nature (NGFS, 2022, Ceglar et al., 2023, Boldrini et al., 2023), the literature remains

relatively sparse.

Furthermore, although climate and nature risks are distinct – climate risk stems from

changes in climatic conditions, whereas nature risk arises from ecosystem degradation – they

are deeply interconnected. Climate change accelerates nature loss, and the degradation of

natural environments contributes to climate change, for instance, by amplifying the impacts

of natural disasters (Taylor and Druckenmiller, 2022, Rizzi, 2023). Forward-looking equity

prices, which encapsulate expectations about future growth and risks, can offer valuable

insights into the economic costs of nature loss.

This paper addresses the central question: To what extent, and through which chan-

nels (dependence versus impact), do financial markets price nature and climate risks? This
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question is crucial for at least two reasons. First, suppose investors and financial markets

demand higher premiums for companies with higher exposure to nature and climate risks. In

that case, they can have an impact on the financing costs of firms and could steer resource

allocation towards less environmentally harmful activities. This shift not only optimizes re-

source allocation but also mitigates the adverse externalities associated with environmental

degradation. Second, shedding light on how nature risk is priced - if at all - enables us

to identify potential market inefficiencies and could ultimately inform more targeted and

effective regulatory measures to protect natural ecosystems.

Mirroring the approach taken with climate risk, we distinguish between physical and tran-

sition risks pertaining to nature. This delineation reflects the concept of double materiality,

which identifies two primary aspects of nature and climate risk. Nature-related physical risks

to a company include, among other things, loss of ecosystem services on which a company

depends for its operations. For example, the productivity of companies may be compromised

by a lack of soil fertility or a decrease in groundwater levels below vital thresholds. We refer

to physical risk as nature dependence. Transition risks associated with nature emerge primar-

ily through regulatory actions aimed at reducing environmental impact, such as regulations

for water filtration systems or restrictions on logging. These transition risks are reflected in

the nature impact measures, which quantify the effects of companies’ economic activities on

the natural environment.

To formalize the distinction between dependence and impact, we develop a stylized gen-

eral equilibrium asset pricing model. The model features a representative investor whose

utility depends on both consumption and the quality of the environment (represented by

aggregate nature and climate states). Firms’ production depends on these environmental

states (capturing dependence, or physical risk), but firms also affect the evolution of these

states through their activities (capturing impact, or transition risk). Firms are atomistic and

do not internalize the environmental externality caused by their impact, although the model
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incorporates an explicit carbon price that levies a charge on climate impacts (emissions),

linking transition risk directly to firm cash flows. Environmental conditions and policy (like

the carbon price) are subject to uncertainty, and investors learn about them through noisy

news signals. In equilibrium, the model yields a factor structure where expected asset re-

turns compensate for exposure (beta) to systematic environmental and policy news shocks.

A central prediction is that a firm’s beta should primarily reflect its dependence on envi-

ronmental conditions, as this directly affects its cash flows and covaries with the investor’s

marginal utility. In contrast, a firm’s environmental impact is predicted to be priced only to

the extent it is internalized via policy mechanisms like the carbon tax; pure nature impact

remains unpriced in the baseline. The model also suggests the critical role of information in

the pricing of environmental risk. As firm-level information on environmental dependence

and impacts becomes more precise, betas should become more aligned with firm-level de-

pendence. In other words, there should be greater consonance between fundamental and

market-implied risk exposures.

Guided by this model, our empirical analysis is based on evaluating the fundamental and

market-implied risk exposures. We employ a dataset provided by S&P Global that contains

information about companies’ nature and climate risk exposures. These company-level char-

acteristics are constructed using a combination of climate and environmental models, sector

and company-specific information on business activities, geographical location of companies’

assets, and (in some cases) corporate disclosures. As these characteristics are based on anal-

ysis of companies’ operations and do not rely on information derived from financial markets,

we refer to them fundamental characteristics. We observe fundamental characteristics corre-

sponding to all four categories - nature dependence, climate dependence, nature impact, and

climate impact.

Also in line with the theoretical model, we estimate sensitivities of companies’ stock

returns to nature and climate-related news shocks - firm-level nature and climate betas,
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respectively. In contrast to fundamental characteristics, these can be viewed as market-

implied exposures to nature and climate risks, as suggested by the factor structure in the

model.

As discussed above, the model predicts that with better information, firms’ nature and

climate betas should more accurately reflect their fundamental risk exposures. Hence, our

main analysis studies whether the change in betas around the year 2015, which represented

a structural shift in information availability and investor attention to environmental issues,

is correlated with the fundamental characteristics. If markets optimally process information

about environmental risks, the availability of better firm-level datasets (and increased atten-

tion to environmental risks) should align market perceptions of firm-level climate and nature

risks with fundamentally determined exposures. We evaluate whether this happened around

2015, indicating whether nature and climate risks are priced by markets.

Our analysis reveals three key findings. First, climate betas increasingly reflect corporate

climate impact after 2015, with higher-impact firms showing greater sensitivity to climate

news, relative to earlier years. Second, we find that post-2015, markets’ perception of firm-

level climate change risk exposures becomes more aligned with firms’ nature dependence (in

particular on water-related ecosystem services). Specifically, changes in climate betas in 2015

are positively correlated with fundamental measures of firm-level climate impact and nature

dependency. In contrast, we do not find a positive correlation between nature betas and firm-

level nature or climate dependence. In fact, companies that depend more on nature saw a

decrease in nature betas relative to less nature-dependent companies. This puzzling finding

suggests inconsistencies in the financial market’s perception and pricing of nature-specific

news and risks.
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1.1 Relation to the literature

Our paper builds on theoretical contributions related to the performance of green assets (Hong

and Kacperczyk, 2009, Pedersen et al., 2021, Pástor et al., 2021, 2022, Hsu et al., 2023) and

on the role of news for the evaluation of the current state by agents, which in turn guides their

asset pricing and consumption-saving decisions (Bybee et al., 2024, Jeon et al., 2022, Bybee

et al., 2023, Serafeim, 2024). For instance, Pástor et al. (2021) highlight the importance of

distinguishing between realized and expected returns in the context of green assets. Bybee

et al. (2024) use business news narratives in The Wall Street Journal to estimate a narrative

factor model and show that this outperforms standard characteristic-based factor models.

Our work connects to this by using news shocks to construct market-implied risk factors

(betas) for nature and climate. Moreover, it relies on the literature on investors’ attention

(Peng and Xiong, 2006, Kacperczyk et al., 2016, Mankiw and Reis, 2002). Kacperczyk et al.

(2016) develop a model where attention constraints affect how investment managers process

risk factor information, relevant to our model’s assumption about learning from noisy signals.

Other related studies have examined the impact of climate events and global warming

on asset pricing. Bansal et al. (2019) reveal the asset pricing implications of rising tempera-

tures using an equilibrium framework with an endogenous temperature process embodied in

a standard long-run risk model. Hong et al. (2023) proposes an asset pricing model in which

natural disaster mitigation costs are priced in the cross-section of firms, while Hong et al.

(2019) finds that stock markets do not efficiently price the increasing risk of drought caused

by climate change. Balvers et al. (2017) shows that the average cost of equity capital is 0.22

percentage points higher on an annual basis due to temperature shocks, while Jagannathan

et al. (2025) find limited incremental compensation for climate transition risk. While infor-

mative about climate risk pricing, these studies generally do not incorporate the distinct role

of nature-related risks or the dependence/impact dichotomy central to our analysis.

The materialized and potential negative consequences of nature risks for the financial
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system have been highlighted in recent contributions (van Toor et al., 2020, Svartzman et al.,

2021, NGFS, 2022, 2023, Ceglar et al., 2023, Boldrini et al., 2023, Arlt et al., 2024). For

example, Ceglar et al. (2023) estimate the biodiversity footprints of the economic activities

of the euro area (and the bank loans provided to enable them) and find that they resulted in

the loss of 582 million hectares of pristine natural areas worldwide. Moreover, Boldrini et al.

(2023) find that 75% of all corporate loan exposures in the euro area strongly depend on

at least one ecosystem service. Arlt et al. (2024) look at the financial stability implications

arising from biodiversity-related transition risk. Moreover, authors have looked at the impact

of biodiversity risk on cash holdings (Ahmad and Karpuz, 2024) and firms’ performance (Bach

et al., 2025).

The papers closest to ours focus on the emerging evidence around a biodiversity premium.

Interest in the financial implications of biodiversity and nature-related factors has increased

notably, particularly following recent calls for research in this area by Karolyi and Tobin-de la

Puente (2023) and Starks (2023). Recent empirical contributions document that financial

markets either misprice biodiversity risks (Huang et al., 2024, Dey, 2025) or have started to

price such risks only in recent years, especially for companies with significant biodiversity

impacts (Garel et al., 2023, Coqueret and Giroux, 2023, Xin et al., 2023). Additionally, mar-

kets continue to misprice companies’ exposure to water-related risks (Colesanti Senni et al.,

2023). Relatedly, firms heavily reliant on ecosystem services have begun to face increased

downside risks following nature-related disruptions or regulatory shocks (Garel et al., 2025).

At the same time, corporate biodiversity disclosures appear increasingly incorporated into

equity valuations (Giglio et al., 2023).

Beyond equities, higher exposure to biodiversity risks is associated with increased yield

spreads on long-term bonds (Soylemezgil and Uzmanoglu, 2024). Similarly, municipal bond

yields in Chinese regions with national nature reserves significantly increased following the

introduction of stricter environmental regulations (Chen et al., 2024). Conversely, proac-
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tive management of biodiversity risks has been linked to lower refinancing costs (Hoepner

et al., 2023) and positive abnormal returns around biodiversity-related policy announcements

(Kalhoro and Kyaw, 2024). Recent studies have also begun integrating biodiversity metrics

into portfolio optimization frameworks (Bouyé et al., 2024, Naffa and Czupy, 2024).

Our paper differs from earlier studies in several key ways. First, by explicitly addressing

both dimensions of double materiality (impact and dependence), unlike Garel et al. (2023)

and Coqueret and Giroux (2023), which exclusively consider the impact component. Second,

in contrast to Giglio et al. (2023), we emphasize production-based risk metrics rather than

disclosure-based ones. Third, our empirical analysis centers on equity returns rather than

sovereign bond portfolios, which distinguishes our approach from that of Bouyé et al. (2024).

In addition, a core focus of our paper is explicitly investigating the interaction between

nature and climate risks. Although extensive ecological literature highlights the complex

biophysical interconnections among different ecosystems (Foley et al., 2003, Zarnetske et al.,

2012, Blois et al., 2013, Lade et al., 2019, Arneth et al., 2020, Bouyé et al., 2024), economic

and financial analyses exploring the feedback effects between nature and climate risks remain

sparse, with only a few recent studies addressing these aspects (Taylor and Druckenmiller,

2022, Rizzi, 2023). Our analysis contributes direct evidence on how financial markets perceive

this interaction. Finally, in developing our nature and climate risk factors, we build upon

methodologies established in the literature on factor models for asset pricing (Zou and Hastie,

2005, Erichson et al., 2020, Pelger and Xiong, 2022, Giroux et al., 2024).

The remainder of this paper proceeds as follows. Section 2 introduces a stylized model that

captures nature and climate physical and transition risks and guides our analysis. Section 3

describes the data, details our methodological approach and presents our empirical findings

on the pricing of nature and climate risk. Section 4 concludes.
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2 Stylized model of nature and climate risk pricing

We develop a parsimonious general-equilibrium model that distinguishes physical environ-

mental risk—arising from firms’ dependence on natural and climatic conditions—from tran-

sition risk—arising from firms’ impact on those conditions and climate policy. Our model

features a representative investor and a continuum of firms in a discrete-time, infinite-horizon

economy. Two aggregate environmental state variables evolve over time: a nature state Nt

(capturing the quality or abundance of ecosystem services, such as biodiversity or soil quality)

and a climate state Zt (capturing the level of climate quality, such as atmospheric carbon or

climate hazard intensity). The carbon price τt is an exogenous, per-unit charge on emissions.1

The environmental states (Nt, Zt) are latent, i.e., investors observe only noisy public signals

and learn about the true states through a Kalman filter. The carbon price τt is publicly

observed.

In what follows we detail (i) the firms’ production technology and environmental impact,

(ii) household preferences that link environmental quality to marginal utility, (iii) the infor-

mation structure—featuring heterogeneous signal precision—that generates nature, climate,

and transition news shocks, and (iv) the equilibrium asset-pricing conditions. Throughout,

we emphasize that a firm’s dependence affects directly its cash flows and hence its system-

atic risk, whereas its environmental impact parameters matters only through their aggregate

effect on environmental states, unless an explicit policy (the carbon price τt) internalizes the

climate externality.

2.1 Firms: production, dependence, and impact

Firms are indexed by i ∈ [0, 1] and produce a homogeneous consumption good. Firm i’s

output at time t is given by a Cobb–Douglas technology with productivity that depends on

1The exogeneity of τt isolates its asset-pricing role. Endogenizing it—for instance, via an optimal
carbon-tax rule that depends on Zt—does not alter the qualitative results.
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the aggregate environmental conditions:

Yi,t = Ai,t K
α
i,t N

γN
i

t Z
γZ
i

t . (1)

Here Ki,t is firm-specific physical capital, Ai,t is an idiosyncratic total factor productivity

term, and α ∈ (0, 1) is the output elasticity of capital. The exponents γN
i and γZ

i capture

firm i’s nature dependence and climate dependence, respectively. A larger γN
i > 0 means that

firm i’s productivity is more sensitive to the health of the natural environment (for example,

an agricultural firm or tourism business benefits greatly from a higher biodiversity or cleaner

ecosystem). γZ
i > 0 indicates that firm i is positively affected by a better climate state Zt

(for instance, lower pollution or less frequent natural disasters). All else equal, a firm with

higher γN
i or γZ

i experiences larger fluctuations in cash flows in response to environmental

shocks.

Firms face a standard investment problem. Each period, firm i pays a dividend Di,t to

its shareholders. Capital accumulates according to Ki,t+1 = (1 − δK)Ki,t + Ii,t, where Ii,t

represents investment in new capital and δK the depreciation rate. A firm also emits δZi Yi,t

units of carbon, where δZi is its climate impact intensity. Under the carbon price τt net

dividends are

Di,t = (1− τt δ
Z
i )Yi,t − Ii,t. (2)

In our baseline model, we assume that nature impacts δNi (e.g., habitat loss per unit output)

are not priced.2

Firm i chooses its investment policy {Ii,t} to maximize its market value, given by the

expected present value of all future dividends discounted at the stochastic discount factor

(SDF) Mt,t+s of the representative household:

max
{Ii,t}t≥0

E0

[
∞∑
t=0

M0,t Di,t

]
, (3)

2We remark that we could also introduce a “nature tax”. However, we want to keep the baseline model
as parsimonious as possible.
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subject to the capital accumulation constraint and taking the processes {Nt, Zt.τt} taken

as exogenous. The firm’s optimization yields the standard Euler equation (we omit these

standard derivations for brevity). Importantly, in equilibrium, the value and dividend stream

of firm i will reflect how its output Yi,t comoves with the aggregate states. Equations (1) and

(2) make clear that fluctuations in the state variables translate into fluctuations in dividends

via the dependence and impact parameters γN
i , γZ

i , and δZi . This is the channel through

which nature and climate dependence risk, as well as climate impact, will enter asset prices.

While producing output, firms also generate externalities that affect the evolution of the

environmental states. We denote by δNi the nature impact of firm i (the rate at which its

production depletes or degrades the natural state) and by δZi the climate impact of firm i (the

rate at which its production increases climate-related damage).3 These impact parameters

introduce a transition risk aspect: they determine how firms collectively influence future

environmental conditions. The aggregate dynamics of the environmental states are given by:

Nt+1 = F (Nt, Zt) −
∫ 1

0

δNi Yi,t di + εNt+1, (4)

Zt+1 = G(Zt, Nt) +

∫ 1

0

δZi Yi,t di + εZt+1. (5)

The functions F (·) and G(·) capture natural growth or decay in the absence of economic

activity.4 The terms εNt+1 and εZt+1 are exogenous shocks (e.g., from weather, natural disasters,

or other factors) which are zero-mean with finite variances. The integrals
∫ 1

0
δNi Yi,tdi and∫ 1

0
δZi Yi,tdi represent the total impact of all firms’ production on the nature and climate

states, respectively. A higher δNi means firm i contributes more to degrading Nt+1 (for

instance, through resource extraction or habitat destruction), and a higher δZi means the

3The introduced δZi here is the same emissions coefficient that appears in the carbon–tax term of dividends
in (2); a tonne of greenhouse gas emissions simultaneously harms the climate state and triggers the statutory
levy. We note that nothing in the ensuing asset-pricing results hinges on this exact identity. Allowing the
tax base to capture, e.g., free allowances or gas-specific conversion rates, leaves all cross-sectional slopes
unchanged because, in the empirical analysis, it will be absorbed by firm fixed effects.

4For example, F (Nt) may represent the natural regeneration of ecosystem N , which could be diminishing
as Nt approaches a carrying capacity, and G(Zt) could capture the physical dynamics of the climate/pollution
state (e.g. a portion of Zt dissipates or decays each period).
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firm emits more pollution or greenhouse gases, worsening Zt+1.

Because each firm is atomistic, it rationally ignores the infinitesimal effect of its own

output on the aggregate stocks Nt and Zt. The environmental externality is therefore not

internalized through the state-transition channel. The carbon levy, however, introduces a

private cost that is linear in the firm’s own emissions, τtδ
Z
i Yi,t, and thus enters cash flows

directly. Consequently, a firm’s γ (dependence) directly affects its cash flows and thereby

its risk premium, and climate impact δZi is priced to the extent that the policy assigns it a

positive and adequate shadow price τi.

2.2 Household preferences and stochastic discount factor

The representative household has preferences defined over consumption and environmental

quality. Let Ct be aggregate consumption at time t (which in equilibrium will equal the

aggregate after-tax dividends). We adopt a non-separable utility specification in which envi-

ronmental conditions scale consumption. To this end, we define an augmented consumption

variable

C̃t = Ct Φ(Nt, Zt), ΦN ≡ ∂Φ

∂N
> 0, ΦZ ≡ ∂Φ

∂Z
< 0, (6)

where Φ(Nt, Zt) is a function capturing the direct contribution of environmental quality to

utility. A convenient specification is Φ(Nt, Zt) = NχN
t Z−χZ

t with χN , χZ > 0. The household’s

one-period utility is:

U(Ct, Nt, Zt) =
C̃ 1−σ

t

1− σ
, (7)

where σ > 0 is the coefficient of relative risk aversion. This non-separable CRRA form

implies that the marginal utility of consumption is directly affected by the environmental

states. Intuitively, the household derives more utility from a unit of consumption when Nt

is higher or Zt is lower (since Φ raises the effective consumption). As a result, fluctuations

in Nt and Zt will influence the household’s intertemporal marginal rate of substitution, that

is, the pricing kernel.
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The representative household maximizes E0 [
∑∞

t=0 β
tU(Ct, Nt, Zt)], where 0 < β < 1 is

the subjective discount factor. Standard arguments yield the stochastic discount factor,

Mt,t+1 = β
UC(Ct+1, Nt+1, Zt+1)

UC(Ct, Nt, Zt)
= β

(C̃t+1

C̃t

)−σ

= β
(Ct+1 Φ(Nt+1, Zt+1)

Ct Φ(Nt, Zt)

)−σ

. (8)

Equation (8) makes clear that the pricing kernel responds to two forces: (i) consumption-growth

risk, ∆ lnCt+1, which now embeds any surprise in τt+1 via after-tax dividends; and (ii)

environmental-quality risk, ∆ lnΦ(Nt+1, Zt+1), which captures the direct welfare effect of fu-

ture nature and climate conditions. Both components will therefore command prices of risk

in equilibrium.

Intuitively, a negative shock to nature quality (lower Nt+1) or to the climate conditions

(lower Zt+1) raises marginal utility directly through a fall in Φ(Nt+1, Zt+1) and indirectly via

the induced decline in aggregate dividends and consumption.

2.3 Information structure and environmental news shocks

A distinctive feature of environmental risk is informational opacity: the true conditions of

natural and climatic systems are only imperfectly observed. We therefore treat the envi-

ronmental stocks nature Nt and climate Zt as latent Markov processes that investors must

infer from noisy public signals (for example, climate and biodiversity related news, but also

scientific reports, satellite observations, or climate model updates). By contrast, the carbon

price τt is observable each period when set by the regulator, but its future path is uncertain

ex ante and thus generates a separate source of policy news.

Environmental news signals. In each period t, after the states Nt, Zt (and firms’ outputs

Yi,t) have realized, investors receive signals about the next period’s environmental states,

st+1 =
(
sNt+1, s

Z
t+1

)⊤
,
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each is a noisy linear mixture of log-nature quality nt+1 ≡ lnNt+1 and log-climate quality

zt+1 ≡ lnZt+1:

sNt+1 = wN nt+1 + (1− wN) zt+1 + ηNt+1,

sZt+1 = (1− wZ)nt+1 + wZ zt+1 + ηZt+1,
0 ≤ wN , wZ ≤ 1, (9)

where the Gaussian noises η·t+1 ∼ N (0, 1/ϕ·
t) capture time-varying signal precision. A higher

ϕN
t , for example, makes sNt+1 a more reliable, less noisy indicator of the particular linear

combination wNnt+1 + (1 − wN)zt+1. The weights wN and wZ capture the empirical fact

that most news sources mix nature and climate content. Investors observe both signals and

update their beliefs about (nt+1, zt+1) through the Kalman filter. Because the signals load

differently on the two states whenever wN ̸= wZ , receiving two independent noisy readings

both sharpens overall precision and provides the cross-signal variation needed to disentangle

nature from climate news.

Stacking the log stocks in xt = (nt, zt)
⊤ ≡ (lnNt, lnZt)

⊤, log-linearizing the transition

laws (4)–(5) around the deterministic steady state, and premultiplying by suitable scaling

matrices, yields the canonical linear Gaussian system

xt+1︸︷︷︸
state

= Axt +wt+1, wt+1 ∼ N (0, Q), (10)

yt+1︸︷︷︸
measurement

= C xt+1 + εt+1, εt+1 ∼ N (0, R), (11)

with observation vector yt+1 = (sNt+1, s
Z
t+1)

⊤ and loading matrix C =
[

wN 1−wN
1−wZ wZ

]
. The

matrices A and Q inherit the physical dynamics of Nt and Zt; R = diag(1/ϕN
t , 1/ϕ

Z
t ) collects

the time-varying signal variances. Given (A,C,Q,R) and the prior (x̂0|−1,Σ0|−1), the Kalman

recursion delivers optimal beliefs,

x̂t+1|t+1 = x̂t+1|t +Kt+1νt+1, νt+1 = yt+1 − Cx̂t+1|t,

where Kt+1 is the Kalman gain. The innovation νt+1 = (νN
t+1, ν

Z
t+1)

⊤ is mean-zero and or-
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thogonal to all information dated t. The unexpected components of the latent states satisfy5

∆nt+1−Et[∆nt+1] = aNN νN
t+1+aNZ νZ

t+1, ∆zt+1−Et[∆zt+1] = aZN νN
t+1+aZZ νZ

t+1, (12)

with coefficients aij pinned down by (A,C,Q,R). We refer to the two linear combinations

on the right-hand side as the nature-news and climate-news shocks, respectively. They sum-

marize all information surprises about future environmental conditions.

We treat our third state variable, the carbon tax, as an exogenous policy instrument

determined outside the model. At date t investors rationally anticipate the conditional mean

Et[ln τt+1]. The innovation

vt+1 ≡ ετt+1 = ln τt+1 − Et[ln τt+1] (13)

is revealed only when the new policy rate is announced at t+ 1. Because each realization of

τt is observed without measurement error once in force, vt+1 is a pure policy-news shock: it

carries no estimation noise, yet it directly alters cash flows through the term −τt+1δ
Z
i Yi,t+1.

Firm-level signals. Investors form expectations based on noisy public signals regarding

environmental states, firm characteristics, and potential future policy or cost scenarios. A

key element of this model is a structural shift post-2015 in information availability. Investors

may learn about latent firm-specific parameters, such as a firm’s true underlying exposure

θi ∈ {γN
i , γZ

i , δ
Z
i } to an emerging risk factor. Let ei = ln θi be the parameter of interest.

Investors receive a noisy signal sθi,t+1 about ei:

sθi,t+1 = ei + ηθi,t+1, ηθi,t+1 ∼ N (0, 1/φt) (14)

where φt is the signal precision. Post-2015, φt increased due to improved corporate disclosures

and improved datasets. Hence, investors receive more precise signals about the dependence

or impact of companies.

5See Appendix H for a derivation of the results.
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After receiving the signal, investors perform a Bayesian update. With diffuse prior6

eθi ∼ N (e0, 1/v0), the static Kalman step delivers

mi,t+1 =
φts

θ
i,t+1 + v0e0

v0 + φt

, vi,t+1 =
1

v0 + φt

,

so the posterior mean and variance are

θ̂i,t = e
mi,t+

1
2(v0+φi,t) , V art(θi) = e2mi,t+1/(v0+φt)

(
e1/(v0+φi,t) − 1

)
.

An increase in precision, φt, increases θ̂i,t.
7

Summarizing the above discussion, we can collect the complete vector of priced surprises

into

Ft+1 =
(
νN
t+1, ν

Z
t+1, υt+1

)⊤
,

where νN
t+1 and νZ

t+1 are the Kalman innovations from the two-state environmental filter and

υt+1 is the policy innovation.

2.4 Equilibrium Asset Prices and Risk Premia

Three shocks drive aggregate uncertainty: (i) nature news FN
t+1 ≡ νN

t+1, (ii) climate news

FZ
t+1 ≡ νZ

t+1, and (iii) carbon-policy news F τ
t+1 ≡ υt+1 = ln τt+1 − Et[ln τt+1]. A first-order

log-linearization of the SDF in (8) yields

lnMt,t+1 = ln β − σ
(
∆ ln C̃t+1

)
+ const,

and unexpected consumption growth decomposes as8

∆ ln C̃t+1 − Et[∆ ln C̃t+1] = bNt F
N
t+1 + bZt F

Z
t+1 + bτtF

τ
t+1, (15)

6Generally, the prior and signal parameters depend on θ. For example, φt should be indexed by θ and
should be referred to as φθ

t . Similarly, e0 and v0 should also be thought of as being indexed by θ. However,
we avoid writing this for notational clarity.

7The uncertainty about the firm’s dependence and impact θi is captured by its posterior variance, Vart(θi).
Uncertainty is therefore decreasing in the level of precision φ.

8The coefficients bNt and bZt in (15) absorb both channels through which an environmental shock af-
fects the SDF: (i) its impact on real consumption via firm output, and (ii) its direct welfare effect through
Φ(Nt+1, Zt+1). Writing the elasticities separately, bNt + cNt and bZt + cZt , would leave all subsequent pricing
equations unchanged, because the market prices of risk depend only on the combined coefficients.
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with bNt > 0, bZt < 0, and bτt < 0 by inspection of firm cash flows.9 This gives rise to a linear

factor CAPM. For any asset paying gross return Ri,t+1,

1 = Et

[
Mt,t+1Ri,t+1

]
⇒ Et[Ri,t+1]− rf,t =

∑
k∈{N,Z,τ}

λk
t β

k
i,t, (16)

where

λk
t = σbktVart(F

k
t+1), βk

i,t =
Covt(Ri,t+1, F

k
t+1)

Vart(F k
t+1)

, (17)

are, respectively, the time-varying market prices of risk and the conditional betas for k ∈

{N,Z, τ}.

The structural determinants of betas can be derived as follows. Using the dividend rule

Di,t = (1 − τtδ̂Z,i,t)Yi,t − Ii,t and holding capital fixed over one period (Campbell and Mei,

1993, Campbell and Vuolteenaho, 2004),

∂nt+1 lnDi,t+1 = γ̂N
i,t, ∂zt+1 lnDi,t+1 = γ̂Z

i,t, ∂υt+1 lnDi,t+1 ≈ −δ̂Zi,t,

so that

βN
i,t ∝ γ̂N

i,t, βZ
i,t ∝ γ̂Z

i,t, βτ
i,t ≈ −τt δ̂

Z
i,t. (18)

Two modeling restrictions underlie equations (15)–(18). First, any discount-rate news

that reaches investors between t and t + 1 is either common across all firms or perfectly

collinear with the three aggregate innovations (FN , FZ , F τ ). In either case the effect is

absorbed by the consumption-loadings bkt in Equation (15), so cross-sectional betas depend

only on dividend news. Second, the three shocks span unexpected consumption growth

and their loadings bkt already combine each shock’s impact on real consumption and its

direct welfare effect through Φ(N,Z); separating those channels would leave all subsequent

pricing equations unchanged. Under these two conditions, the dividend sensitivities in (18)

are sufficient statistics for conditional betas, and the linear factor pricing relation in (16)

holds without further qualification. Log-linearizing the SDF around a deterministic steady

9bτt < 0 because an unanticipated rise in τt+1 is a lump-sum transfer from shareholders to the tax
authority.
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state supplies the only additional approximation needed. Extending the analysis beyond

this first-order log-linear approximation, e.g., allowing for nonlinear SDF dynamics or a

Campbell–Shiller cash-flow/discount-rate decomposition, is an important avenue for future

research.

Remarks on the theoretical setup. Our stylized equilibrium highlights why double ma-

teriality (dependence vs. impact) leads to different asset pricing outcomes. The dependence

parameters (γN
i , γZ

i ) capture financial materiality: how environmental conditions (the state

of Nt and Zt) affect the firm’s financial performance (output Yi,t and cash flows Di,t). The

impact parameters (δNi , δZi ) capture impact materiality: how the firm’s activities affect the

environment and society (by contributing to the degradation of Nt or worsening of Zt). Our

theoretical results illustrate that, in a market equilibrium focused solely on financial returns

and lacking mechanisms to internalize externalities, only financial materiality (γi) is directly

priced via its effect on systematic risk exposure (βi). Impact materiality (δi) becomes finan-

cially relevant, and thus potentially priced, only if and when it translates into anticipated

financial consequences for the firm, for instance through regulation, reputational damage

affecting sales, or changes in operating costs.

Our model relies on log-linearization of the environmental dynamics and the stochastic

discount factor around a steady state, along with the assumption of Gaussian shocks. While

common in macroeconomic modeling, these assumptions necessarily abstract from potentially

crucial features of environmental systems, such as strong non-linearities, feedback loops,

critical thresholds, or tipping points. Furthermore, environmental risks might exhibit non-

Gaussian characteristics like fat tails or jump risk, associated with extreme events or abrupt

system shifts (see, e.g., Fernández-Villaverde et al., 2024). Capturing these features is beyond

the scope of our current linearized framework.

Our theoretical model, while stylized, provides sharp predictions regarding the differential
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pricing of environmental risks in financial markets. The central distinction between depen-

dence on environmental states (γN
i , γZ

i ) and impact on those states (δNi , δZi ) generates clear

implications for the cross-section of expected returns. Specifically, the model posits that

financial materiality, captured by dependence parameters that directly influence firm cash

flows, should be systematically priced as it covaries with the representative agent’s marginal

utility. In contrast, impact materiality is predicted to remain largely unpriced unless explic-

itly internalized through policy mechanisms, such as the carbon tax τt for climate impact in

our setup.

Our theoretical framework leads to several core hypotheses that can guide to empirical in-

vestigation. First, if environmental risks are priced, we should expect firm-level climate betas

(βClim
i ), reflecting sensitivities to climate news, to be positively associated with fundamen-

tal measures of both climate dependence (γZ
i ) and climate impact (δZi ), particularly where

impact translates into direct costs via mechanisms like carbon pricing. Second, nature betas

(βBio
i ) should primarily reflect nature dependence (γN

i ). A significant link between nature be-

tas and nature impact (δNi ) would be less expected under the model’s baseline assumptions,

potentially emerging only if markets anticipate future regulation or if investor preferences

incorporate non-pecuniary aversion to nature degradation beyond our model’s scope. Third,

the model highlights the critical role of information. The predicted relationships between

market-implied betas and fundamental characteristics should strengthen following improve-

ments in information precision (φt) and salience, such as the period after the 2015 Paris

Agreement.

Our empirical analysis will be guided by these predictions. By estimating firm-specific sen-

sitivities (betas) to systematic nature and climate news shocks and comparing these market-

implied risk exposures to the fundamental dependence and impact characteristics sourced

from S&P Global, we can assess the extent to which markets price these distinct risk dimen-

sions. The 2015 structural shift in information availability and investor attention provides a

18



powerful setting to operationalize the model’s implications regarding the role of information

and evolving market perceptions.

3 Empirics

3.1 Data and sample construction

We assemble a comprehensive dataset by merging multiple S&P Global data sources on

firm-level environmental characteristics with traditional financial data. In particular, we

combine three proprietary S&P Global datasets containing nature- and climate-related firm

characteristics with stock return data from CRSP and news-based indices of climate and

biodiversity risk.10

3.1.1 Description

The firm-level environmental data come from three integrated datasets provided by S&P

Global, each covering one of the four risk categories (nature dependence, nature impact, cli-

mate physical risk, climate transition risk). We describe these datasets and the fundamental

characteristics they include, then outline the financial data and news-based risk indices that

complement our analysis.

Fundamental characteristics

Nature risk: Our primary source on nature-related risk is the S&P Global Nature and Bio-

diversity Risk dataset, which evaluates a firm’s exposure to nature-related risks arising from

its operations at specific locations.11 Consistent with the Taskforce on Nature-related Finan-

cial Disclosures (TNFD) framework, this dataset focuses on two dimensions: a company’s

dependence on nature and its impact on nature.12

10See Appendix C and D for a description of the variable selection process and descriptive correlation
among the variables.

11For methodological details, see the S&P Global report.
12See the latest TNFD recommendations.
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Nature dependence measures how much a company relies on ecosystem services and the

vulnerability of those services to degradation. It evaluates the firm’s operational reliance

on various ecosystem services (e.g., disease control, mass stabilization of soil, groundwater

replenishment) in conjunction with the resilience of the ecosystems providing those services.

The reliance component reflects the materiality of each service to the firm’s production pro-

cesses and the relevance of that service given the firm’s geographic footprint. The resilience

component gauges the capacity of the local ecosystem to continue supplying the service.

Combining these factors, the dataset provides a granular assessment of nature dependence,

with scores across 21 distinct ecosystem services (for example, pollination, water filtration,

and climate regulation). In total, there are 82 metrics capturing different aspects of a firm’s

dependence on nature.13 For our main analysis, we choose 16 of these.14

Nature impact captures the degree to which a company’s activities adversely affect nat-

ural ecosystems. This dimension is driven by the magnitude and spatial extent of the firm’s

environmental footprint and the ecological importance of the areas impacted. Key determi-

nants include the intensity of the firm’s operational pressures on nature (e.g., land use or

pollution) and the sensitivity or critical significance of the affected ecosystems (such as bio-

diversity hotspots or protected areas). Unlike the dependence metrics, which mix firm needs

with ecosystem traits, the impact metrics are purely location-specific measures of harm. The

Nature and Biodiversity Risk dataset provides 18 metrics of nature impact, including indi-

cators of ecosystem integrity (how closely an ecosystem remains to a pristine state), species

extinction risk, and overlap of the firm’s operations with critical natural habitats. 15 We

choose 9 of these for our main analysis.

Climate risk: Climate risks are captured through two complementary datasets: S&P Global

Sustainable1, focusing on physical climate risks, and S&P Global Trucost, concentrating on

13See Appendix A for a description of the different ecosystem services considered.
14Refer to Appendix C for an explanation of how these were chosen.
15See Appendix A for a description of the different impacts considered.
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emissions.

Climate dependence is quantified using exposure scores derived from S&P Global Sus-

tainable1, indicating companies’ vulnerability to eight climate-related hazards: water stress,

droughts, wildfires, coastal floods, fluvial floods, extreme heat, extreme cold, and tropical cy-

clones. The dataset includes 544 metrics per company, constructed through advanced climate

change models (CMIP6), asset-level information, and proprietary methodologies. Exposure

scores, ranging from 1 (least exposed) to 100 (most exposed), measure point-in-time haz-

ard exposure relative to global conditions across eight decadal horizons (2020–2090) under

four distinct climate scenarios aligned with IPCC pathways and TCFD guidelines (SSP1-2.6,

SSP2-4.5, SSP3-7.0, SSP5-8.5). We use 9 of these in our main analysis - these correspond

to exposure to 8 different hazards, and one composite exposure metric, under the SSP3-7.0

scenario in the year 2030.

Climate impact addresses transition risks via company-level emissions data provided by

S&P Global Trucost. This dataset encompasses annual Scope 1, 2, and 3 emissions as well

as emission intensities calculated by scaling total emissions relative to company revenues.

Data sources include corporate disclosures and outputs from S&P Global’s environmentally-

enhanced proprietary Input-Output model.

News-based risk indices

To capture broad shifts in market concern about climate- and nature-related risks, we use

news-based indices developed in Giglio et al. (2023). Specifically, we employ the New York

Times (NYT) Biodiversity News Index and the NYT Climate News Index.16 Each index is

constructed by scanning daily news articles and counting the number of articles with negative

versus positive tone on the respective topic. The index value for a given day is defined as

the number of positive news articles minus the number of negative news articles concerning

biodiversity (for the Biodiversity News Index) or climate change (for the Climate News

16These are available for download on https://www.biodiversityrisk.org.
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Index). Thus, a higher index indicates a day with more good news (positive coverage) than

bad news about biodiversity or climate. We interpret increases in these indices as proxies for

shocks to perceived nature-related or climate-related risks. Both series span multiple decades

and were kindly provided by Giglio et al. (2023). These news indices will be used to derive

“nature betas” and “climate betas” for each stock, based on how sensitive a firm’s returns

are to biodiversity or climate news shocks.

Return data

Data on stock returns is obtained from CRSP. Returns are defined as the change in closing

price between the last trading day of two consecutive months. We compute the excess return

as the return above the risk-free rate obtained from Keith French’s website, from which

we also download the Fama-French five factors. We utilize daily returns obtained from

CRSP’s daily security file to estimate CAPM-implied market betas and idiosyncratic return

volatilities.

3.1.2 Dataset construction

Our sample consists of U.S. common stocks over the period January 2006 to December 2021.

Following standard practice, we include only firms with CRSP share codes 10 or 11 (common

equity) and exclude securities that are likely erroneous or illiquid. In particular, we drop

any stock-month observations with a share price below $1 at the end of the month or a

raw monthly return above 300%. This filter eliminates penny stocks and implausibly large

return outliers that could bias the results. To further mitigate the influence of outliers, all

continuous characteristics (e.g., emissions intensities or betas) are winsorized at the 5% level.

These filtering steps yield a broad panel of firms for which we have both the S&P Global

environmental data and the necessary return and news data.
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3.2 Empirical analysis

We estimate firm-level nature and climate betas from stock returns and test whether these

estimated betas correlate with fundamental risk characteristics as predicted by the theory

(“characteristics comparison”).

3.2.1 Estimating betas

The market-implied nature and climate characteristics, or betas, are computed as the sen-

sitivities of stock returns to aggregated nature and climate risk measures in the form of

biodiversity and nature-related indices.

News innovations. To compute innovations in the news related to nature and climate, we

calculate moving averages for the biodiversity and climate news indices provided by Giglio

et al. (2023) using a seven-day window. Next, we fit a daily AR(1) model to transform news

indices using a four-year rolling window, and use it to generate a one-day-ahead prediction.

News innovations, or news shocks, are calculated as the difference between the observed and

predicted values. Hence, they capture unexpected changes in biodiversity or climate news.

Betas. Following Huij et al. (2023), we run company-by-company time-series regressions of

stock returns on news innovations to estimate the sensitivity of returns to biodiversity and

climate shocks, while controlling for other equity risk factors. Specifically, we run rolling

window regressions using daily observations using the following specification:

ri,t = αi + βBio
i,t BioShockt + βClim

i,t ClimShockt+ (19)

+ βMKT
i,t MKTt + βSMB

i,t SMBt + βHML
i,t HMLt + ϵi,t,
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where ri,t is the excess return (above the risk-free rate) of company i’s stock at time t.

BioShockt and ClimShockt are the biodiversity and climate news shocks, respectively.17

MKT is the excess return on the market portfolio, SMB represents the return spread

between small- and large-cap stocks and HML measures the return spread between high

book-to-market and low book-to-market stocks. The coefficient of interests are the monthly

sensitivities to biodiversity and climate shocks, βBio
i,t and βClim

i,t .

Each rolling window is defined by an end date corresponding to the last day of each month.

We restrict the width of the window to less than 6 months and only run the regression if the

number of observations in the window exceeds 100 days. This gives us estimates for βBio
i,t and

βClim
i,t corresponding to the end of each month. To create a monthly dataset of nature and

climate betas, we assign the betas estimated for the window corresponding to the last day of

month m to the entire month m+ 1.18

3.2.2 Characteristics comparison

Since the Paris Agreement in 2015, there has been a significant global increase in information

regarding environmental sustainability, including biodiversity loss. This heightened aware-

ness has been driven by international agreements, scientific findings, and public discourse

around the importance of protecting natural ecosystems. Increased awareness affects in-

vestors’ behavior and might lead to changes in the perception of climate and nature-related

17In our specification, climate news includes both physical and transition risk-related news, hence we
cannot disentangle the effect of a carbon tax, as described in the theoretical model. In other words, our
estimated climate beta is a combination of the climate dependence and impact betas in the model, and we
do not explicitly capture the news related to a carbon tax. This can introduce a bias in our estimates. In

particular, since βτ is negatively correlated with δ̂Z , if the correlation between climate impact and dependence
is positive, our estimates are biased downward. If the correlation is negative, our estimates would be biased
upward. From the correlation analysis (see Figure D.2 in the Appendix), we see that the correlation is
generally positive, with the exception of extreme heat and fluvial floods.

18This approach enables us to detect the financial markets’ perception of nature and climate risks. Under
the specification adopted, we are able to find some evidence of nature risk pricing and of the market’s
perception of the interaction between nature and climate risks, despite the signal being weak. More traditional
approaches do not deliver satisfactory results. The intuition is that the estimated sensitivities pick up
company and time variation in risk at a higher frequency (daily): stock prices might react to news at short
horizons and the effects are not long-lived, but the higher frequency helps us pick up how these small effects
are correlated with fundamental risk exposure.
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risks (Acharya et al., 2022).19 Therefore, guided by our model, we are interested in the

correlation between the change in betas after the Paris Agreement and the fundamental

characteristics. Accordingly, we run the panel regression

β̂κ
i,t = Γκ,CharCharacteristici × Post2015 + Fixed effects + ϵi,t, (20)

where β̂κ
i,t is the monthly sensitivity of stock i to biodiversity (κ = Bio) or climate news shocks

(κ = Clim), estimated in regression (19), Post2015 is a dummy variable taking value 1 after

2015 and Characteristic is a fundamental characteristic. The fundamental characteristics in

our dataset do not vary over time, and the validity of our empirical strategy relies on the

ranking of firms remaining unchanged over time. Consistent with this approach, we consider

three alternative transformations of the fundamental characteristics. We rank companies on

each characteristic in our full sample (as described in Section 3). The pooled rank gives

unconditional relative exposures of companies. We also want to decompose this into sectoral

and within-sector exposures. For the latter, we rank companies within each sector, which

we refer to as the within-sector rank. For the former, we rank sectors based on the average

pooled rank of companies in each sector, and assign the sectoral rank to all companies in

that sector.

Our theory makes predictions about how the correlation between betas and fundamental

characteristics changes from pre-2015 to post-2015 for any given company or sector. Consis-

tent with this, for each transformation, we adopt a fixed effects specification that isolates this

variation. With pooled ranks, we use month-year and firm fixed effects. Using within-sector

ranks, in addition to month-year, we also use sector fixed effects to control for any sector-level

variation in betas. Finally, with sectoral ranks, we use month-year and sector fixed effects.20

19Although the Paris Agreement was a climate-related event, we believe that the increased attention in
the markets that it generated might have implications also for the pricing of other nature-related risks.

20As a robustness test, we also run regressions without firm fixed effects, which amounts to computing the
pooled cross-sectional correlation before and after 2015 and looking at the difference. Results are qualitatively
unchanged.
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In all cases, standard errors are clustered at the company and month-year level.21

We are interested in the coefficient on the interaction between the fundamental character-

istics and the post-2015 dummy, Γκ,Char
1 , that is, how the change in beta after 2015 correlates

with the fundamental characteristics. Importantly, the results have to be interpreted as dif-

ferential effects. Our results show whether companies deemed fundamentally riskier became

more sensitive to nature/climate news post 2015, relative to less risky companies.

Additionally, we form portfolios sorted by estimated betas and fundamental characteris-

tics, and we test whether their returns align, particularly in the post-2015 period (“characteristic-

sorted portfolio comparison”). Our results are qualitatively similar to the characteristics

comparison results discussed below.22

3.3 Results

This section presents our main results for the characteristics comparison. For better

visualization, we display our results as heatmaps. The color of the cell corresponds to the

point estimate of the parameter of interest, and the statistical significance is indicated by

stars.23

Climate beta and climate impact. Companies with higher climate impact (emissions,

δZ) become relatively more sensitive to climate news after 2015, compared to lower risk

companies (that is, the interaction coefficient Γκ,Char
1 is positive, see Figure 1). Based on our

model, the interpretation of this finding is that an increase in information precision led to

a larger gap between the emissions assigned to high and low polluters, thus resulting in a

positive correlation with the actual emission level and intensity at the company level.

21As an additional robustness test, we also run the regression with Driscoll and Kraay standard errors to
account for potential autocorrelation in the errors. Results are qualitatively unchanged, but significance is
higher, as expected given that clustered standard errors produce more conservative estimates.

22See Appendix F.
23In this section, we only present results that provide statistically significant evidence. See Appendix E

for additional results based on the characteristics comparison.
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While coefficients on all fundamental characteristics for each ranking type - pooled,

within-sector, and sectoral - are positive, they are bigger24 and more statistically significant

for pooled and sectoral rankings, indicating that markets perceive these risks to predomi-

nantly operate at the sectoral level, rather than within sectors.25

Climate beta and nature dependence. Post-2015, market perceptions of firm-level cli-

mate change risk exposures became more aligned with firms’ nature dependence (in particular

on water-related ecosystem services). Specifically, changes in climate betas after 2015 are pos-

itively correlated with fundamental measures of nature dependency (see Figure 2). In other

words, stocks that are more exposed to nature dependence are relatively more sensitive to

climate news after 2015.

A company’s climate beta is tied to market perceptions of how its cash flows are linked to

its dependence on climate. Our results suggest that markets consider dependence on water-

related ecosystem services a relevant aspect of climate risk. Consistent with this, we find a

positive (but not statistically significant) correlation between changes in climate beta and

firm-level water stress exposure (See Figure E.2 in the Appendix).26

Nature beta and nature dependence. The model predicts that for higher signal pre-

cision (after 2015), the gap between the posterior mean nature dependence for high and

low nature-dependent firms increases. This should result in a higher gap among the nature

beta for high and low dependent firms, with nature beta increasing for high dependent firms.

Hence, the correlation with the fundamental metric should be positive after 2015. In contrast,

24To interpret magnitudes, one approach is to scale the coefficients by the standard deviation of βClim

residualized by firm and month-year fixed effects. Our rankings range from 0 to 1. The (statistically signifi-
cant) scaled coefficients for pooled rankings range from 0.096 to 0.130. The corresponding scaled coefficients
for within sector regressions are between 0.03 and 0.05 and not significant.

25An alternative explanation is that our fundamental climate impact characteristics contain less measure-
ment error when averaged over companies within each sector.

26Chronic climate dependence characteristics, such as water stress exposure, are based on locations of firms’
assets. Unlike nature dependency characteristics, which include the materiality of an ecosystem service to
the firm’s operations, they do not explicitly take operational dependence into account. This could potentially
explain this result.
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Figure 1: Post-2015 Change in Climate Beta vs. Climate Impact Characteristics. This
figure displays the estimated coefficient ΓClim,Char

1 from the panel regression in Equation
(20). It shows the correlation between the change in firm-level climate beta (βClim) after 2015
and various fundamental measures of climate impact. The coefficients in column “pooled”
correspond to pooled rankings and are estimated with firm and time fixed effects. The
coefficients in column “within sector” correspond to within-sector rankings and are estimated
with firm and time fixed effects. The coefficients in column “sectoral” correspond to sector
rankings and are estimated with sector and time fixed effects. All standard errors are clustered
by firm and month-year. Significance levels are indicated by stars (*: p-value < 0.1, **: p-
value < 0.01, ***: p-value < 0.001).

we do not find a positive correlation between nature betas and firm-level (nature or climate)

dependence (see Figure 3). In fact, companies that depend more on nature saw a decrease

in nature betas relative to less nature-dependent companies. Through the lens of our model,

this suggests that markets are not correctly processing nature-related news, which could be
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Figure 2: Post-2015 Change in Climate Beta vs. Nature Dependence Characteristics.
This figure displays the estimated coefficient ΓClim,Char

1 from Equation (20), showing the
correlation between the post-2015 change in climate beta (βClim) and fundamental measures
of nature dependence across various ecosystem services. The coefficients in column “pooled”
correspond to pooled rankings and are estimated with firm and time fixed effects. The
coefficients in column “within sector” correspond to within-sector rankings and are estimated
with firm and time fixed effects. The coefficients in column “sectoral” correspond to sector
rankings and are estimated with sector and time fixed effects. All standard errors are clustered
by firm and month-year. Significance levels are indicated by stars (*: p-value < 0.1, **: p-
value < 0.01, ***: p-value < 0.001).

due to low precision of nature-related news, less attention to the firm-level dependence or a

combination of these. Nonetheless, the fact that we detect statistically significant negative

correlations for several ecosystem services is a puzzle.
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Figure 3: Post-2015 Change in Nature Beta vs. Nature Dependence Characteristics. This
figure displays the estimated coefficient ΓBio,Char

1 from Equation (20), showing the correla-
tion between the post-2015 change in nature beta (βBio) and fundamental measures of nature
dependence. The coefficients in column “pooled” correspond to pooled rankings and are esti-
mated with firm and time fixed effects. The coefficients in column “within sector” correspond
to within-sector rankings and are estimated with firm and time fixed effects. The coefficients
in column “sectoral” correspond to sector rankings and are estimated with sector and time
fixed effects. All standard errors are clustered by firm and month-year. Significance levels
are indicated by stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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4 Conclusion

There is increasing awareness of the risks arising from the complex relationship between

the economy and the natural environment, extending beyond climate change. Our study

addresses the pricing of these intertwined risks by first developing a stylized general equi-

librium asset pricing model. The model features a representative investor sensitive to both

consumption and environmental quality (nature and climate states), alongside firms whose

production depends on these states (dependence, or physical risk) but whose activities also

degrade them (impact, or transition risk). We explicitly incorporate a carbon price that

links climate impact to cash flows, while nature impact remains an unpriced externality in

the baseline. Investors learn about the latent environmental states and uncertain policy

through noisy news signals, facing information frictions that evolve, particularly concerning

emissions disclosures post-2015.

The model predicts that dependence should be priced as it directly affects firm cash flows

and covaries with marginal utility, while impact should only be priced if internalized by policy

like the carbon tax. Empirically, we investigate these predictions by examining four risk

categories derived from the model’s structure: nature dependence, nature impact, climate

dependence, and climate impact. Using company-level data and comparing fundamental

characteristics with market-implied betas derived from stock return sensitivities to nature

and climate news shocks, our findings offer support for the model’s predictions.

Our analysis reveals three key findings regarding the market’s treatment of environmen-

tal risks after the 2015 structural shift in information availability and investor attention.

First, there’s evidence that corporate climate impact is being priced, with climate betas of

higher-impact firms showing greater sensitivity after 2015. Second, the market’s percep-

tion of climate change risk, reflected through climate betas, has become more aligned with

firms’ nature dependence, particularly on water-related ecosystem services, since changes in

climate betas correlate positively with these fundamental risk measures. In contrast, our
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findings reveal no such positive alignment for nature-specific risks. Instead, companies more

dependent on nature experienced a relative decrease in their nature betas, indicating signifi-

cant inconsistencies in how financial markets perceive and price these distinct environmental

risks.

These findings have implications for sustainable finance. If markets increasingly price na-

ture dependence, it could steer capital towards less environmentally reliant activities. How-

ever, the lack of pricing for nature impacts suggests that market mechanisms alone may be

insufficient to address ecological degradation comprehensively. Enhanced transparency and

potentially regulatory measures, perhaps analogous to the carbon price mechanism for nature

impacts, might be needed to ensure corporate environmental footprints are fully reflected in

market prices, aligning financial incentives with long-term ecological and economic viability.

Our work provides a theoretically grounded framework and empirical evidence contributing

to this ongoing exploration.
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A Ecosystem services

Ecosystem service Description

Animal-based energy Physical labour provided by domesticated or commer-
cial species, including oxen, horses, donkeys, goats and
elephants.

Fibres and other materials Includes wood, timber, and fibres which are not further
processed, as well as material for production, such as
cellulose, cotton, and dyes, and plant, animal and algal
material for fodder and fertiliser use.

Genetic materials Genetic material is understood to be deoxyribonucleic
acid (DNA) and all biota including plants, animals and
algae.

Ground water Groundwater is water stored underground in aquifers
made of permeable rocks, soil and sand. The water that
contributes to groundwater sources originates from rain-
fall, snow melt, and water flow from natural freshwater
resources.

Surface water Surface water is provided through freshwater resources
from collected precipitation and water flow from natural
sources.

Maintain nursery habitats Nurseries are habitats that make a significantly high
contribution to the reproduction of individuals from a
particular species, where juveniles occur at higher den-
sities, avoid predation more successfully, or grow faster
than in other habitats.

Pollination Pollination services are provided by three main mecha-
nisms: animals, water and wind. The majority of plants
depend to some extent on animals that act as vectors,
or pollinators, to perform the transfer of pollen.

Table A.1: Ecosytem services
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Ecosystem service Description

Soil quality Soil quality is provided through weathering processes,
which maintain bio-geochemical conditions of soils in-
cluding fertility and soil structure, and decomposition
and fixing processes, which enables nitrogen fixing, ni-
trification and mineralisation of dead organic material.

Ventilation Ventilation provided by natural or planted vegetation is
vital for good indoor air quality and without it there are
long term health implications for building occupants due
to the build-up of volatile organic compounds (VOCs),
airborne bacteria and moulds.

Water flow maintenance The hydrological cycle, also called water cycle or hydro-
logic cycle, is the system that enables circulation of wa-
ter through the Earth’s atmosphere, land, and oceans.
The hydrological cycle is responsible for recharge of
groundwater sources (i.e. aquifers) and maintenance of
surface water flows.

Water quality Water quality is provided by maintaining the chemi-
cal condition of freshwaters, including rivers, streams,
lakes, and ground water sources, and salt waters to en-
sure favourable living conditions for biota.

Bio-remediation Bio-remediation is a natural process whereby living or-
ganisms such as micro-organisms, plants, algae, and
some animals degrade, reduce, and/or detoxify contam-
inants.

Dilution Water, both fresh and saline, and the atmosphere can
dilute the gases, fluids and solid waste produced by hu-
man activity.

Filtration Filtering, sequestering, storing, and accumulating pol-
lutants is carried out by a range of organisms including,
algae, animals, microorganisms and vascular and non-
vascular plants.

Mediation of sensory im-
pacts

Vegetation is the main (natural) barrier used to reduce
noise and light pollution, limiting the impact it can have
on human health and the environment.

Table A.2: Ecosystem services
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Ecosystem service Description

Buffering and attenuation
of mass flows

Buffering and attenuation of mass flows allows the trans-
port and storage of sediment by rivers, lakes and seas.

Climate regulation Global climate regulation is provided by nature through
the long-term storage of carbon dioxide in soils, veg-
etable biomass, and the oceans. At a regional level, the
climate is regulated by ocean currents and winds while,
at local and micro-levels, vegetation can modify temper-
atures, humidity, and wind speeds.

Disease control Ecosystems play important roles in regulation of dis-
eases for human populations as well as for wild and do-
mesticated flora and fauna.

Flood and storm protection Flood and storm protection is provided by the shel-
tering, buffering and attenuating effects of natural and
planted vegetation.

Mass stabilisation and ero-
sion control

Mass stabilisation and erosion control is delivered
through vegetation cover protected and stabilising ter-
restrial, coastal and marine ecosystems, coastal wet-
lands and dunes. Vegetation on slopes also prevents
avalanches and landslides, and mangroves, sea grass and
macroalgae provide erosion protection of coasts and sed-
iments.

Pest control Pest control and invasive alien species management is
provided through direct introduction and maintenance
of populations of the predators of the pest or the invasive
species, landscaping areas to encourage habitats for pest
reduction, and the manufacture of a family of natural
biocides based on natural toxins to pests.

Table A.3: Ecosystem services
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B Impacts

Impact Description

Magnitude: Land use Extent of land used for or affected by an asset or com-
pany’s business activity.

Magnitude: Ecosystem in-
tegrity index (Composition)

Quantifies the relative integrity of the species present in
a given location compared to a pristine state. Ecosystem
composition refers to the identity and variety of life. A
value of 0 indicates a low integrity, a value of 1 means a
pristine state.

Magnitude: Ecosystem in-
tegrity index (Structure)

Quantifies the relative integrity of the physical charac-
teristics of a given location compared to a pristine state.
Ecosystem structure is dependent on habitat area, in-
tactness, and fragmentation. A value of 0 indicates a
low integrity, and a value of 1 means a pristine state.

Magnitude: Ecosystem in-
tegrity index (Function)

Quantifies the relative functioning state of an ecosystem
in a given location compared to a pristine state. A value
of 0 indicates a low integrity, a value of 1 means a pris-
tine state.

Magnitude: Ecosystem in-
tegrity index (Composite)

Quantifies the relative integrity of an ecosystem in a
given location compared to a pristine state calculated as
the minimum of all three components: ecosystem struc-
ture, composition, and function. A value of 0 indicates
a low integrity, and a value of 1 means a pristine state.

Magnitude: Ecosystem in-
tegrity impact (Composi-
tion)

Quantifies the impact of all pressures applied in a given
location on the species present in an ecosystem com-
pared to a pristine state. A value of 0 indicates no im-
pact, a value of 1 means complete degradation.

Table B.1: Impacts
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Impact Description

Magnitude: Ecosystem in-
tegrity impact index (Struc-
ture)

Quantifies the impact of all pressures applied in a given
location on the physical characteristics of an ecosystem
compared to a pristine state. A value of 0 indicates no
impact, a value of 1 means complete degradation.

Magnitude: Ecosystem in-
tegrity impact index (Func-
tion)

Quantifies the impact of all pressures applied in a given
location on the functioning state of an ecosystem com-
pared to a pristine state. A value of 0 indicates no im-
pact, a value of 1 means complete degradation.

Magnitude: Ecosystem in-
tegrity impact index (Com-
posite)

Quantifies the impact of all pressures applied in a given
location on the integrity of an ecosystem compared
to a pristine state calculated as the maximum of all
three components: ecosystem structure, composition,
and function. A value of 0 indicates no impact, a value
of 1 means complete degradation.

Magnitude: Ecosystem in-
tegrity footprint

Provides a condition-adjusted area footprint of an asset
or company’s operations. The total area of ecosystem
occupied by a business activity can be adjusted for the
degree to which its integrity is reduced, thereby express-
ing impact of different business activities on a common
scale. This provides a measure of the equivalent area in
hectares where integrity is reduced to zero.

Table B.2: Impacts
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Impact Description

Significance: Species
Threat Abatment and
Restoration Metric (STAR)

Allows the quantification of the potential contributions
that species threat abatement and restoration activities
offer towards reducing extinction risk across the world.
It quantifies the relative significance of the area studied
for biodiversity conservation.

Significance: Species signif-
icance index

A normalized version of STAR (from 0 to 1) to more
clearly indicate the relative significance of species impact
in an area. The index quantifies the relative significance
of the area studied for biodiversity conservation. A value
of 0 means no significance, a value of 1 means highest
significance.

Significance: Nature Con-
tribution to People (NCP)

Quantifies the critical nature of the ecosystems in which
an asset or company operates, defined as the natural and
semi-natural terrestrial and aquatic ecosystems required
to maintain 12 of nature’s ‘local’ contributions to people
(local NCP) on land (green) and in the ocean (blue).

Significance: Ecosystem
contribution index

Quantifies the critical nature of the ecosystems in which
an asset or company operates, defined as the natural and
semi-natural terrestrial and aquatic ecosystems required
to maintain 12 of nature’s ‘local’ contributions to people
(local NCP) on land (green) and in the ocean (blue).
It is a normalized value of the Nature Contribution to
People indicator. A value of 0 means no significance, a
value of 1 means highest significance.

Significance: Ecosystem
significance index (Com-
posite)

Quantifies the relative environmental significance of a
specific ecosystem in terms of biodiversity and nature
contribution to people in the form of ecosystem services
(from 0 to 1). It is a composite index calculated as
the maximum of the species significance index and the
ecosystem contribution index. A value of 0 means no
significance, a value of 1 means highest significance.

Table B.3: Impacts
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Impact Description

Significance: Overlap with
Protected Area(s)

Indicates the number of WDPAs that an asset or com-
pany overlaps with.

Significance: Area overlap-
ping with Protected Area(s)

Indicates the total area of an asset or company overlap-
ing with one or more WDPA.

Significance: Overlap with
Key Biodiversity Area(s)

Indicates the number of KBAs that an asset or company
overlaps with.

Significance: Area overlap-
ping with Key Biodiversity
Area(s)

Indicates the total area of an asset or company overlap-
ing with one or more KBA.

Aggregate: Ecosystem foot-
print (HSA)

Significance-weighted and condition-adjusted area foot-
print of an asset or company’s operations. The total area
of ecosystem occupied by a business activity can be ad-
justed for the degree to which its integrity is reduced as
well as the degree to which it is ecologically significant,
thereby expressing the impact of different business ac-
tivities on a common scale. This provides a measure of
the equivalent area in hectares of the most pristine and
significant ecosystems where integrity is reduced to zero.

Table B.4: Impacts
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C Selecting characteristics

The combined data initially include a very large set of fundamental environmental character-

istics (123 variables across the four categories of nature dependence, nature impact, climate

physical, and climate transition risk). Before proceeding to the analysis, we address two key

challenges in using these characteristics: time availability and multicollinearity.

(i) Time dimensions and rankings: Most of the S&P environmental metrics (with the

exception of the annual emissions data) are only available as a one-time assessment for each

firm (or are very low-frequency). This means we effectively have a cross-sectional snapshot of

each firm’s nature and climate exposures, rather than a time series. To incorporate these into

our asset pricing tests, we assume that each firm’s relative risk exposure is persistent over

the sample period. In practice, we rank companies cross-sectionally on each characteristic

and use the rank (scaled between 0 and 1) as the variable of interest. This ranking approach

converts each metric into a unit-free measure of relative exposure (with 0 indicating the lowest

exposure in the universe and 1 the highest). It also puts all characteristics on a comparable

scale. For the climate impact (emissions) variables that do vary over time, we take each firm’s

historical average emissions (over the sample period) and then assign a rank based on those

averages, to make them conceptually consistent with the mostly cross-sectional nature of the

other categories. While using long-run averages and ranks sacrifices some time variation, it

is aligned with the notion that a firm’s risk profile (in terms of, say, highest emitters vs.

lowest emitters, or most nature-dependent vs. least) remains fairly stable over the sample.

This assumption – that the cross-sectional ranking of risk exposures is roughly constant –

is similar to the approach in Acharya et al. (2022) and is reasonable given the relatively

slow-moving nature of these fundamental exposures.

(ii) Redundancy and multicollinearity: Many of the raw characteristics are highly cor-

related or even explicitly constructed from others (for example, an ecosystem service de-

pendence score might be the product of two underlying factors, materiality and resilience).
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Including numerous collinear variables would add noise and complexity to the analysis with-

out improving insight. We therefore impose a variable selection procedure to distill a smaller

set of informative, low-redundancy characteristics. First, within each of the four risk cate-

gories, we identify and retain a subset of “core” metrics that are relatively broad or important,

avoiding mechanically derived sub-components. (In the example above, we might keep the

composite dependence score but drop its two multiplicative components, or vice versa, to pre-

vent double-counting the same effect.) Next, we examine the correlations among the retained

characteristics. We sequentially eliminate variables until no pair of remaining variables has

an absolute pairwise correlation above a high threshold (we use 0.98).27 Hence, we retain

the largest set of features, ensuring that each pair is sufficiently distinct in what it measures.

This data-driven filtering significantly reduces the dimensionality of the characteristics while

preserving the vast majority of unique information. The result is a final set of firm-level

metrics that capture nature and climate exposure, serving as the independent variables in

our empirical tests.

D Correlation among fundamental characteristics

As an initial check, we examine the correlations among the selected environmental character-

istics to understand their relationships. Figures D.1 to D.4 in Appendix D present heatmaps

of the correlation matrices for these variables, both within each category and across cat-

egories.28 These visual summaries confirm that the remaining characteristics, while not

perfectly orthogonal, capture distinct aspects of nature and climate risk. A few noteworthy

patterns emerge from the correlation analysis:

Within nature-related measures: Firms with a larger ecosystem footprint or greater

resource use tend to exhibit higher dependence on ecosystem services. In other words, com-

27See Appendix D.2 for the full correlation matrices before screening.
28For completeness, Appendix D.2 reports the corresponding heat-maps for all underlying S&P Global

metrics (Figures D.7 to D.5), which confirm that the broad correlation patterns hold once the full variable
universe is considered.
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panies that extensively use land and natural resources are usually more reliant on the services

provided by those ecosystems (such as clean air, water filtration, pollination, and climate reg-

ulation). This is an intuitive result – resource-intensive operations require more ecosystem

services to sustain them. An exception is that dependence on certain specialized services

(e.g., bioremediation or the mediation of sensory impacts) is not strongly correlated with

broader footprint measures, perhaps because those services are context-specific. Conversely,

firms operating in environments with high ecosystem integrity (ecosystems closer to pristine

condition) tend to show lower dependence on ecosystem services. Companies that heavily

depend on ecosystem services often degrade those very ecosystems, resulting in a negative

correlation between a high dependence score and the ecosystem’s integrity index. Overall,

the nature dependence and nature impact variables are meaningfully but not perfectly cor-

related, indicating that they capture related yet distinct facets of a firm’s interaction with

nature.

Within climate-related measures: The various physical climate hazard exposure scores

are generally positively correlated with one another and with the emissions-based measures.

Firms that are highly exposed to one type of climate hazard (say, drought) often tend to

be exposed to others (like heat or wildfire), and these firms also often have larger carbon

footprints. Notably, in our data most hazard exposure scores have a positive correlation with

the firm’s emission levels (climate impact), with a couple of outliers: extreme heat exposure

and fluvial flood exposure show little correlation with total emissions. This suggests that high

emitters (typically large industrial firms) also face multiple physical climate risks, though

certain risks like heatwaves may threaten a different set of firms (e.g., utilities in specific

regions) irrespective of their emissions.

Across nature and climate categories: We also observe interesting interactions between

climate risk and nature risk at the firm level. Firms with high overall exposure to physi-

cal climate hazards tend to also rank highly in nature dependence. In particular, exposure
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to hazards such as extreme cold and wildfires (and, to a lesser extent, coastal flooding) is

positively correlated with a firm’s dependence on ecosystem services. Likewise, companies

with large carbon emissions (high climate impact) overwhelmingly also have high nature

dependence scores – intuitively, businesses that emit more (e.g., heavy manufacturers) of-

ten rely more on natural resources and ecosystem services, with one minor exception being

the above-mentioned sensory impacts service. The correlation between climate dependence

(physical hazard exposure) and nature impact is more mixed: some hazard exposures (no-

tably coastal flood, extreme cold, and wildfire risk) are positively correlated with metrics of

nature impact (such as land use or ecosystem degradation footprints), while others are weakly

related. Finally, looking at climate impact vs. nature impact, we find that certain impact

metrics go hand-in-hand – for example, firms with extensive land use (a nature impact) also

tend to have high greenhouse gas emissions, and those that degrade ecosystem integrity or

affect ecologically significant areas likewise tend to be high emitters. These cross-category

correlations highlight that climate and nature risks are often intertwined: companies that

contribute heavily to climate change or are exposed to climate hazards also exert significant

pressure on ecosystem services. Importantly, however, none of these correlations is so extreme

as to indicate perfect collinearity, underscoring the value of examining each risk dimension

separately.

In summary, our final dataset provides a rich cross-sectional profile of each firm’s na-

ture and climate risk exposures, with relatively limited redundancy among the variables.

These patterns in the data serve as a backdrop for our asset pricing analysis. With the key

characteristics defined and understood, we now turn to testing whether these nature- and

climate-risk exposures are reflected in stock returns. In the next section, we use news-based

shocks to estimate firms’ nature betas and climate betas, and examine whether those betas

– and the underlying characteristics themselves – carry significant risk premia as suggested

by our theoretical framework.
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D.1 Correlation heatmaps for the main mharacteristics

In this Section, we show the correlation between the metrics used in the analysis.

Figure D.1: Correlation Between Selected Nature Impact and Nature Dependence Charac-
teristics. This heatmap shows the pairwise correlations between fundamental characteristics
measuring nature impact (y-axis) and nature dependence (x-axis). It generally reveals a pos-
itive association, indicating that firms with larger environmental footprints often rely more
heavily on ecosystem services.

Figure D.1 indicates that firms with larger environmental footprints (high nature im-

pact) generally also rely more heavily on ecosystem services (high nature dependence). The

resulting correlations are therefore predominantly positive and often strong. Nonetheless,

several specialised dependence metrics exhibit only weak co-movement with broad foot-

print measures, and operations located in pristine ecosystems display a modest negative

link—underscoring that impact and dependence capture related but distinct facets of corpo-

rate interaction with nature.
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Figure D.2: Correlation Between Selected Climate Impact and Climate Dependence Char-
acteristics. This heatmap displays pairwise correlations between fundamental climate impact
(emissions, y-axis) and climate dependence (physical hazard exposure, x-axis) characteris-
tics. Most correlations are positive, suggesting high emitters tend to face multiple physical
climate risks, though exposure to specific hazards like extreme heat shows weaker links.

In Figure D.2, most pairwise correlations are positive: firms with sizeable greenhouse-gas

emissions (climate impact) tend also to face multiple physical climate hazards (climate depen-

dence). The alignment is particularly pronounced for combined drought–heat–wildfire risks,

whereas exposures such as extreme heat or fluvial floods show weaker links with emissions.

Thus, high emitters frequently shoulder several climate risks, but no single hazard perfectly
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tracks a firm’s emission profile.

Figure D.3: Correlation Between Selected Climate Dependence and Nature Dependence
Characteristics. This heatmap shows pairwise correlations between climate dependence
(physical hazard exposure, y-axis) and nature dependence (ecosystem service reliance, x-
axis). The predominantly positive correlations highlight that firms vulnerable to physical
climate hazards, especially wildfire, extreme cold, and coastal floods, tend to also rely more
on ecosystem services.

Interpretation. Figure D.3 reveals a clear positive relationship between climate dependence

and nature dependence: firms vulnerable to physical climate hazards also tend to rely more on

ecosystem services. Exposures to wildfires, extreme cold, and coastal flooding map especially
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strongly into higher nature dependence, highlighting an interconnected risk profile whereby

climate-vulnerable businesses are simultaneously reliant on ecosystem services.

Figure D.4: Correlation Between Selected Climate Impact and Nature Dependence Char-
acteristics. This heatmap displays pairwise correlations between climate impact (emissions,
y-axis) and nature dependence (ecosystem service reliance, x-axis). A strong positive rela-
tionship is evident, indicating that firms contributing most to climate change (high emitters)
are also typically those most reliant on ecosystem services.

Figure D.4 shows that heavy emitters (climate impact) almost invariably register high

nature dependence. Virtually every emissions measure is strongly and positively associated

with aggregate dependence scores, suggesting that businesses contributing most to climate
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change are also those most reliant on ecosystem services. The lone exception—one narrow

dependence metric—confirms the rule by demonstrating that, while highly aligned, the two

constructs remain conceptually distinct.

Figure D.5: Correlation Between Selected Climate Dependence and Nature Impact Char-
acteristics. This heatmap shows pairwise correlations between climate dependence (physical
hazard exposure, y-axis) and nature impact (environmental footprint, x-axis). The relation-
ships are heterogeneous: exposures to coastal floods, extreme cold, and wildfires show mod-
erate positive links with nature impact metrics, while other hazard exposures show weaker
associations.

Correlations in Figure D.5 are heterogeneous. Certain hazards—coastal flood, extreme
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cold, wildfire—display moderate positive links with nature impact metrics such as land-use or

ecosystem-integrity loss, whereas other hazards show little association. These mixed results

imply that physical climate risk and environmental footprint sometimes coincide but can just

as easily diverge across firms.

Figure D.6: Correlation Between Selected Climate Impact and Nature Impact Characteris-
tics. This heatmap displays pairwise correlations between climate impact (emissions, y-axis)
and nature impact (environmental footprint, x-axis). Strong positive correlations indicate
that high emitters tend to have significant nature impacts (e.g., land use, ecosystem integrity
loss), though the metrics capture distinct environmental dimensions.

Figure D.6 confirms that firms with high climate impact also tend to register sizeable
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nature impact. Large land-use footprints, ecosystem-integrity degradation, and overlap with

ecologically significant areas are all strongly correlated with emissions. Yet none of the coeffi-

cients approach unity, indicating that each impact metric captures a separate environmental

dimension even when they frequently co-occur.

D.2 Correlation heatmaps for all the characteristics

In this appendix we show correlation heat-maps for all underlying S&P Global metrics—well

beyond the streamlined set analyzed in the main paper. These figures let readers verify that

the broad patterns reported in Section 3 and Appendix D persist when the entire variable

universe is considered.

Figure D.7 confirms that a broad, positive association runs through the nature panel:

firms with large ecosystem footprints (high impact) also rely more on ecosystem services

(high dependence). The warm diagonal blocks highlight especially strong links (e.g., land-use

versus water-flow maintenance), yet cool cells along the right edge show that some dependence

measures, such as those tied to pristine ecosystem integrity, move inversely with impact,

underscoring that the two constructs are related but not redundant.

Figure D.8 illustrates that the dozen-plus nature-impact variables do not collapse to a

single dimension. While many pairs cluster positively (e.g. land-use with ecosystem integrity

loss), others show only modest correlation, and a few— notably STAR versus certain footprint

measures—are virtually orthogonal. The dispersion justifies keeping multiple impact metrics

in robustness tests and rules out multicollinearity concerns.

Figure D.9 shows that firms exposed to physical climate hazards frequently also score high

on nature-dependence. The strongest links appear for wildfire, extreme cold and coastal-flood

risks, all of which align with elevated demand for key ecosystem services such as water

filtration and pollination. Some hazards (e.g. extreme heat) exhibit weaker ties, indicating

that climate–nature interdependence is pronounced but not universal across risk dimensions.
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Figure D.7: Correlation Between All Nature Dependence and Nature Impact Metrics. This
heatmap shows pairwise correlations across the full set of nature dependence (x-axis) and
nature impact (y-axis) metrics available in the data. It confirms a broad positive association,
though weaker or inverse correlations for some pairs highlight that the two constructs are
related but distinct.
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Figure D.8: Correlation Within All Nature Impact Metrics. This heatmap displays pairwise
correlations among the full set of nature impact metrics. While some positive clusters exist
(e.g., related to land use or integrity loss), the presence of weakly correlated or orthogonal
pairs indicates that these metrics do not collapse to a single dimension.
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Figure D.9: Correlation Between All Climate Dependence and Nature Dependence Metrics.
This heatmap shows pairwise correlations between the full set of climate dependence (physical
hazard exposure, y-axis) and nature dependence (ecosystem service reliance, x-axis) metrics.
It confirms the positive relationship seen in Figure D.3, with risks like wildfire, extreme cold,
and coastal floods showing stronger alignment with nature dependence.
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E Additional characteristic comparison results

E.1 Risk pricing

The correlation for nature beta and nature impact and climate beta and climate dependence

is not significant in our sample.

Figure E.1: Post-2015 Change in Nature Beta vs. Nature Impact Characteristics. This
heatmap shows the correlation between the change in βBio after 2015 and fundamental mea-
sures of nature impact; no statistically significant correlation is found. The coefficients in
column “pooled” correspond to pooled rankings and are estimated with firm and time fixed
effects. The coefficients in column “within sector” correspond to within-sector rankings and
are estimated with firm and time fixed effects. The coefficients in column “sectoral” corre-
spond to sector rankings and are estimated with sector and time fixed effects. All standard
errors are clustered by firm and month-year. Significance levels are indicated by stars (*:
p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).

60



Figure E.2: Post-2015 Change in Climate Beta vs. Climate Dependence Characteristics.
This heatmap shows the correlation between the change in βClim after 2015 and fundamental
measures of climate dependence. The coefficients in column “pooled” correspond to pooled
rankings and are estimated with firm and time fixed effects. The coefficients in column
“within sector” correspond to within-sector rankings and are estimated with firm and time
fixed effects. The coefficients in column “sectoral” correspond to sector rankings and are
estimated with sector and time fixed effects. All standard errors are clustered by firm and
month-year. Significance levels are indicated by stars (*: p-value < 0.1, **: p-value < 0.01,
***: p-value < 0.001).
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Dependent Variable: β̂Bio

Model: (1) (2) (3)

Variables
Constant -0.0003

(0.0005)

β̂Clim -0.0111 -0.0116 -0.0092
(0.0105) (0.0104) (0.0103)

Fixed-effects
month:year Yes
permno Yes

Fit statistics
Observations 223,057 223,057 223,057
R2 0.00055 0.01042 0.03918
Within R2 0.00061 0.00038

Clustered (permno & month*year) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table E.1: Correlation between climate and nature betas.

E.2 Nature-climate interaction

E.2.1 Correlation among betas

A first insight on the relationship between nature and climate risks can be obtained by

looking at the correlation between nature and climate betas. Hence, we run the regression

β̂Bio
i,t = β̂Clim

i,t + γ + εi,t (21)

without fixed effects, with time fixed effects (month-year) to understand the correlation

within each cross section, and with company fixed effects to study the correlation for each

company over time. Table E.1 shows that nature and climate betas are negatively correlated,

although the coefficients are not statistically significant. The results also show that most of

the variation in cross sectional, supporting our ranking assumption.
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E.2.2 Beta- and fundamental characteristics

We find no significant correlation for nature beta and climate dependence, nature beta and

climate impact and cliamte beta and nature impact.

Figure E.3: Post-2015 Change in Nature Beta vs. Climate Dependence Characteristics.
This heatmap shows the correlation between the change in βBio after 2015 and fundamental
measures of climate dependence. Significance levels are indicated by stars (*: t-value >
2, **: t-value > 2.5, ***: t-value > 3) using robust standard errors clustered by firm and
month-year.
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Figure E.4: Post-2015 Change in Nature Beta vs. Climate Impact Characteristics. This
heatmap shows the correlation between the change in βBio after 2015 and fundamental mea-
sures of climate impact. The coefficients in column “pooled” correspond to pooled rankings
and are estimated with firm and time fixed effects. The coefficients in column “within sector”
correspond to within-sector rankings and are estimated with firm and time fixed effects. The
coefficients in column “sectoral” correspond to sector rankings and are estimated with sector
and time fixed effects. All standard errors are clustered by firm and month-year. Significance
levels are indicated by stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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Figure E.5: Post-2015 Change in Climate Beta vs. Nature Impact Characteristics. This
heatmap shows the correlation between the change in βClim after 2015 and fundamental
measures of nature impact; no statistically significant correlation is found. The coefficients
in column “pooled” correspond to pooled rankings and are estimated with firm and time
fixed effects. The coefficients in column “within sector” correspond to within-sector rankings
and are estimated with firm and time fixed effects. The coefficients in column “sectoral”
correspond to sector rankings and are estimated with sector and time fixed effects. All
standard errors are clustered by firm and month-year. Significance levels are indicated by
stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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F Sorted-portfolios results

F.1 Characteristic-sorted portfolios comparison

We also compare the returns of long-short portfolios sorted on betas with those sorted on

fundamental characteristics. We construct equal-weighted portfolios sorted on our character-

istics and betas. For the betas, we rank companies based on the sorting characteristic within

each time period, whereas for the fundamental characteristics, the ranks are computed in

2021. In both cases, we assign the companies to two quantiles based on ranks. We rank

companies following three different approaches, namely pooled ranks, within-sector ranks,

and sectoral ranks.We then calculate the monthly average excess return for each quantile

and compute the return differential between the two quantiles, representing returns on a

long-short portfolio.

We investigate whether the returns on betas- and fundamental characteristics-sorted port-

folios co-move more after 2015. The intuition is that markets should care more about the

exposure to nature and climate risks (as captured by the fundamental characteristic-sorted

portfolios) after 2015, and this should be reflected in the returns on the beta-sorted portfolios.

Hence, we run the time series regression

rβ̂,κt = Ωκ,Char
0 rChar

t + Ωκ,MKT
0 MKTt + Ωκ,SMB

0 SMBt + Ωκ,HML
0 HMLt+ (22)

+
(
Ωκ,Char

1 rChar
t + Ωκ,MKT

1 MKTt + Ωκ,SMB
1 SMBt + Ωκ,HML

1 HMLt

)
× Post2015 + ϵt,

where rβ̂,κt (rChar
t ) are the returns on beta- (fundamental characteristics-) sorted portfolios.

We use heteroskedasticity and autocorrelation-consistent standard errors. We run regression

(22) for returns obtained using pooled portfolios, within-sector portfolios and sectoral port-

folios. We are interested in the coefficient on the interaction between the returns on the

beta-sorted portfolios and the Post2015 dummy, Ωκ,Char
1 .
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F.1.1 Correlation among betas

We first look at the correlation between nature and climate beta-sorted portfolios under the

three different ranking specifications. As in the previous analysis, we look at the change

in correlation after 2015 and use HAC standard errors.Results are reported in Table F.1

and show that nature beta sorted-portfolios and climate beta-sorted portfolios are negatively

correlated. This weak negative correlation might hint at hedging behavior but requires

cautious interpretation.

Dependent Variable: rβ̂,Bio

Model: (1) (2) (3)

Variables

Post2015 × rβ̂,Clim -0.0963 0.0171 -0.1727
(0.1978) (0.1559) (0.2711)

Fit statistics
Observations 180 180 180
R2 0.06957 0.06634 0.12732
Adjusted R2 0.00865 0.00521 0.07018

vcovHAC standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table F.1: Testing for Portfolio-Level Synergy: Nature vs. Climate Beta-Sorted Returns. This
table examines the time-series correlation between returns of portfolios sorted on nature betas
(rβ̂,Bio) and climate betas (rβ̂,Clim), specifically testing for a shift post-2015 (coefficient on Post2015×
rβ̂,Clim). The consistently negative, though statistically insignificant, point estimates across sorting
methods hint at a potential diversification or hedging effect between the two risks at the portfolio
level, warranting further investigation.

F.1.2 Beta- and fundamental characteristic-sorted portfolios

We show how beta-sorted portfolios returns are correlated with the fundamental characteristic-

sorted portfolios after 2015. Consistently with the comparison of the characteristics, the most

evident effects are a negative (positive) correlation between the nature (climate) beta- and

nature dependence- (climate impact-) sorted portfolios after 2015. As well as a positive cor-
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relation between climate beta-sorted portfolios and nature dependence. However, the effects

are less significant when considering portfolio returns.

Figure F.1: Nature Beta-Sorted vs. Nature Dependence-Sorted Portfolio Return Correla-
tion (Post-2015). This heatmap displays the coefficient ΩBio,Char

1 relating post-2015 returns
of βBio-sorted portfolios to nature dependence-sorted portfolios, showing a generally negative
but less significant relationship. The coefficients in column “pooled” correspond to pooled
rankings and are estimated with firm and time fixed effects. The coefficients in column
“within sector” correspond to within-sector rankings and are estimated with firm and time
fixed effects. The coefficients in column “sectoral” correspond to sector rankings and are
estimated with sector and time fixed effects. All standard errors are clustered by firm and
month-year. Significance levels are indicated by stars (*: p-value < 0.1, **: p-value < 0.01,
***: p-value < 0.001).
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Figure F.2: Nature Beta-Sorted vs. Nature Impact-Sorted Portfolio Return Correlation
(Post-2015). This heatmap displays the coefficient ΩBio,Char

1 relating post-2015 returns of
βBio-sorted portfolios to nature impact-sorted portfolios; results are largely insignificant.
The coefficients in column “pooled” correspond to pooled rankings and are estimated with
firm and time fixed effects. The coefficients in column “within sector” correspond to within-
sector rankings and are estimated with firm and time fixed effects. The coefficients in column
“sectoral” correspond to sector rankings and are estimated with sector and time fixed effects.
All standard errors are clustered by firm and month-year. Significance levels are indicated
by stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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Figure F.3: Climate Beta-Sorted vs. Climate Dependence-Sorted Portfolio Return Correla-
tion (Post-2015). This heatmap displays the coefficient ΩClim,Char

1 relating post-2015 returns
of βClim-sorted portfolios to climate dependence-sorted portfolios; results are largely insignif-
icant. The coefficients in column “pooled” correspond to pooled rankings and are estimated
with firm and time fixed effects. The coefficients in column “within sector” correspond to
within-sector rankings and are estimated with firm and time fixed effects. The coefficients
in column “sectoral” correspond to sector rankings and are estimated with sector and time
fixed effects. All standard errors are clustered by firm and month-year. Significance levels
are indicated by stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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Figure F.4: Climate Beta-Sorted vs. Climate Impact-Sorted Portfolio Return Correlation
(Post-2015). This heatmap displays the coefficient ΩClim,Char

1 relating post-2015 returns
of βClim-sorted portfolios to climate impact-sorted portfolios, showing a generally positive
but less significant relationship. The coefficients in column “pooled” correspond to pooled
rankings and are estimated with firm and time fixed effects. The coefficients in column
“within sector” correspond to within-sector rankings and are estimated with firm and time
fixed effects. The coefficients in column “sectoral” correspond to sector rankings and are
estimated with sector and time fixed effects. All standard errors are clustered by firm and
month-year. Significance levels are indicated by stars (*: p-value < 0.1, **: p-value < 0.01,
***: p-value < 0.001).

.
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Figure F.5: Nature Beta-Sorted vs. Climate Dependence-Sorted Portfolio Return Correla-
tion (Post-2015). This heatmap displays the coefficient ΩBio,Char

1 relating post-2015 returns of
βBio-sorted portfolios to climate dependence-sorted portfolios; results are insignificant. The
coefficients in column “pooled” correspond to pooled rankings and are estimated with firm
and time fixed effects. The coefficients in column “within sector” correspond to within-sector
rankings and are estimated with firm and time fixed effects. The coefficients in column “sec-
toral” correspond to sector rankings and are estimated with sector and time fixed effects. All
standard errors are clustered by firm and month-year. Significance levels are indicated by
stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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Figure F.6: Nature Beta-Sorted vs. Climate Impact-Sorted Portfolio Return Correlation
(Post-2015). This heatmap displays the coefficient ΩBio,Char

1 relating post-2015 returns of
βBio-sorted portfolios to climate impact-sorted portfolios; results are largely insignificant.
The coefficients in column “pooled” correspond to pooled rankings and are estimated with
firm and time fixed effects. The coefficients in column “within sector” correspond to within-
sector rankings and are estimated with firm and time fixed effects. The coefficients in column
“sectoral” correspond to sector rankings and are estimated with sector and time fixed effects.
All standard errors are clustered by firm and month-year. Significance levels are indicated
by stars (*: p-value < 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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Figure F.7: Climate Beta-Sorted vs. Nature Dependence-Sorted Portfolio Return Correla-
tion (Post-2015). This heatmap displays the coefficient ΩClim,Char

1 relating post-2015 returns
of βClim-sorted portfolios to nature dependence-sorted portfolios, showing a positive rela-
tionship for water-related dependencies but with less significance. The coefficients in column
“pooled” correspond to pooled rankings and are estimated with firm and time fixed effects.
The coefficients in column “within sector” correspond to within-sector rankings and are es-
timated with firm and time fixed effects. The coefficients in column “sectoral” correspond
to sector rankings and are estimated with sector and time fixed effects. All standard errors
are clustered by firm and month-year. Significance levels are indicated by stars (*: p-value
< 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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Figure F.8: Climate Beta-Sorted vs. Nature Impact-Sorted Portfolio Return Correlation
(Post-2015). This heatmap displays the coefficient ΩClim,Char

1 relating post-2015 returns
of βClim-sorted portfolios to nature impact-sorted portfolios. The coefficients in column
“pooled” correspond to pooled rankings and are estimated with firm and time fixed effects.
The coefficients in column “within sector” correspond to within-sector rankings and are
estimated with firm and time fixed effects. The coefficients in column “sectoral” correspond
to sector rankings and are estimated with sector and time fixed effects. All standard errors
are clustered by firm and month-year. Significance levels are indicated by stars (*: p-value
< 0.1, **: p-value < 0.01, ***: p-value < 0.001).
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G Variables construction

In this section, we describe how each firm-level variable is constructed. Data are retrieved

from Compustat, and we apply standard filters to restrict the sample to industrial firms

(‘indfmt = INDL‘), standardized data format (‘datafmt = STD‘), U.S. domestic companies

(‘popsrc = D‘), and consolidated records (‘consol = C‘). These filters ensure that each unique

gvkey–datadate pair corresponds to a single observation.

Annualized returns. Daily stock returns are compounded to obtain realized returns at a

monthly frequency. Specifically, we compute

(1 + r1)(1 + r2) · · · (1 + rT )− 1,

where r1, . . . , rT are the daily returns in the period. This expression yields the realized return

over the period, expressed at a monthly frequency.

Book-to-market ratio. Following Bali et al. (2016), the book-to-market ratio (BM) is

defined as the book value of common equity (BE) divided by the market value of equity (ME),

i.e. BM = BE/ME, where BE = SEQ + TXDB + ITCB − BV PS. Here, SEQ denotes

stockholders’ equity (book value) in Compustat notation. We adjust this book equity for

deferred taxes (TXDB) and investment tax credits (ITCB), and subtract the book value of

preferred stock (BVPS). The book value of preferred stock is taken as the redemption value

(PSTKRV), or if that is unavailable, the liquidating value (PSTKL), and if still unavailable,

the par value (PSTK). If either SEQ or TXDB is missing in Compustat, we cannot compute

BE (and thus BM). If ITCB is missing, we set it to zero. Similarly, if all preferred stock

fields are missing, we set the preferred stock value to zero. For each year, we use the latest

reported book equity value, and we obtain the firm’s market capitalization from CapitalIQ

Pro (using the December market cap of that year).
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Timing assumption. To ensure that our BM measure uses only information available at

the time of portfolio formation, we adopt a standard timing convention. Specifically, the BM

computed using year-y accounting data is assumed to become public only at the end of June

of year y + 1. Thus, from June of year y through May of year y + 1, we use the BM value

based on year y − 1 data. This approach follows Fama and French (1992), who assume a

six-month gap after the fiscal year-end to account for reporting lags (firms have up to three

months after year-end to report data, and many fail to meet this deadline).

Momentum. Momentum at time t is defined as the cumulative (geometric) stock return

from month t− 11 to month t− 1. Formally,

Momi,t = 100

(
t−1∏

m=t−11

(1 +Ri,m)− 1

)
,

where Ri,m is the return of firm i in month m.

Volatility. Volatility at time t is the annualized standard deviation of monthly returns

from t− 11 to t− 1. Formally,

V oli,t = 100

√
12 ·

∑ t−1
m=t−11R

2
i,m

n
,

where n is the number of monthly return observations in the 12-month window (typically

n = 12).

Profitability. We consider two definitions of profitability. The first is gross profit (‘gp‘)

divided by book equity (BE), following Ball et al. (2015). The second, following Fama and

French (2015), is operating profit (‘opprft‘) divided by book equity. Here, operating profit

is calculated as total revenues (‘revt‘) minus cost of goods sold (‘cogs‘), interest expense

(‘xint‘), and selling, general, and administrative expenses (‘xsga‘). We apply the same timing

convention here as described above for BM.
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Investment. We use the Fama and French (2015) definition of investment:

invt =
att−1 − att−2

att−2

,

where ‘at‘ denotes total assets. Additionally, following Bolton and Kacperczyk (2023), we

include the logarithm of net property, plant, and equipment (‘ppent‘) as a control variable

(since ‘ppent‘ measures fixed assets). The same BM timing convention is applied here as

well.

Market leverage. Market leverage is defined as the ratio of debt to total assets. We

compute total debt as total assets minus book equity (BE). Thus, market leverage (see, for

instance, Ozdagli (2012)) is

MktLeverage = 1− BE

at
.

Size. Size is measured as the natural logarithm of the firm’s market capitalization.

Market beta. Market beta is measured as the correlation between the firm’s stock returns

and the corresponding market returns.
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H Deriving the Nature- and Climate-News Shocks

This appendix shows in detail why the unexpected components of the latent states can

be expressed as linear combinations of the signal innovations, as stated in the main text.

Throughout, we work with the linear–Gaussian state–space system:

xt+1 = Axt +wt+1, wt+1 ∼ N (0, Q),

yt+1 = C xt+1 + εt+1, εt+1 ∼ N (0, R),

with state vector xt = (nt, zt)
⊤ and observation vector yt+1 = (sNt+1, s

Z
t+1)

⊤. The measurement

matrix is C =
[

wN 1−wN
1−wZ wZ

]
and the noise processes wt+1 and εt+1 are mutually independent

as well as independent of information dated t.

Innovation representation. Define the one-step prediction and its error

x̂t+1|t = A x̂t|t, νt+1 ≡ yt+1 − C x̂t+1|t.

Because the model is linear and Gaussian, the joint distribution of (wt+1, εt+1) conditional

on history is normal with mean zero and block-diagonal covariance diag(Q,R). Furthermore,

νt+1 = Cwt+1 + εt+1.

Best linear predictor of the state surprise. The unexpected change in the state vector

is

ut+1 ≡ xt+1 − Et[xt+1] = wt+1,

since Et[xt+1] = Axt. We want the conditional expectation of ut+1 given the signal innovation

νt+1:

mt+1 ≡ Et[ut+1 | νt+1].

By the properties of the multivariate normal distribution, the minimum-mean-square-error

linear predictor is

mt+1 = QC⊤(C QC⊤ +R
)−1︸ ︷︷ ︸

Kt+1

νt+1.
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The matrix pre-multiplier is exactly the Kalman gain Kt+1. Substituting back, the first

element of mt+1 is the expected surprise in nature, the second in climate:

[
∆nt+1 − Et[∆nt+1]

∆zt+1 − Et[∆zt+1]

]
= Kt+1

[
νN
t+1

νZ
t+1

]
.

Writing the two rows of Kt+1 as (aNN , aNZ) and (aZN , aZZ) yields the main equation in the

main text:
∆nt+1 − Et[∆nt+1] = aNN νN

t+1 + aNZ νZ
t+1,

∆zt+1 − Et[∆zt+1] = aZN νN
t+1 + aZZ νZ

t+1.

Closed-form expression for the coefficients For the two-dimensional case, the Kalman

gain is

Kt+1 = QC⊤(C QC⊤ +R
)−1

, Q =

[
σ2
n 0

0 σ2
z

]
, R =

[
1/ϕN

t 0
0 1/ϕZ

t

]
. (23)

Plugging C, Q, and R into (23) and inverting the 2 × 2 matrix CQC⊤ + R produces the

explicit formulas

aNN =
σ2
nwNϕ

N
t + σ2

n(1− wZ)ϕ
Z
t

∆
, aNZ =

σ2
n(1− wN)ϕ

N
t + σ2

nwZϕ
Z
t

∆
,

aZN =
σ2
z(1− wN)ϕ

N
t + σ2

zwZϕ
Z
t

∆
, aZZ =

σ2
zwNϕ

N
t + σ2

z(1− wZ)ϕ
Z
t

∆
,

(24)

where ∆ =
(
w2

Nσ
2
n + (1 − wN)

2σ2
z

)
ϕN
t +

(
(1 − wZ)

2σ2
n + w2

Zσ
2
z

)
ϕZ
t . Equation (24) confirms

that the mapping from signal innovations to state surprises depends only on observable ob-

jects (wN , wZ , σ
2
n, σ

2
z , ϕ

N
t , ϕ

Z
t ); all structural parameters of the production side drop out. In

particular, when wN = wZ = 1
2
and ϕN

t = ϕZ
t , the rows of Kt+1 are identical, reproducing the

well-known result that equally noisy, perfectly collinear signals cannot disentangle the two

latent states.
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